Repolarization reserve evolves dynamically during the cardiac action potential: effects of transient outward currents on early afterdepolarizations.

نویسندگان

  • Thao P Nguyen
  • Neha Singh
  • Yuanfang Xie
  • Zhilin Qu
  • James N Weiss
چکیده

BACKGROUND Transient outward K currents (Ito) have been reported both to suppress and to facilitate early afterdepolarizations (EADs) when repolarization reserve is reduced. Here, we used the dynamic clamp technique to analyze how Ito accounts for these paradoxical effects on EADs by influencing the dynamic evolution of repolarization reserve during the action potential. METHODS AND RESULTS Isolated patch-clamped rabbit ventricular myocytes were exposed to either oxidative stress (H2O2) or hypokalemia to induce bradycardia-dependent EADs at a long pacing cycle length of 6 s, when native rabbit Ito is substantial. EADs disappeared when the pacing cycle length was shortened to 1 s, when Ito becomes negligible because of incomplete recovery from inactivation. During 6-s pacing cycle length, EADs were blocked by the Ito blocker 4-aminopyridine, but reappeared when a virtual current with appropriate Ito-like properties was reintroduced using the dynamic clamp (n=141 trials). During 1-s pacing cycle length in the absence of 4-aminopyridine, adding a virtual Ito-like current (n=1113 trials) caused EADs to reappear over a wide range of Ito conductance (0.005-0.15 nS/pF), particularly when inactivation kinetics were slow (τinact≥20 ms) and the pedestal (noninactivating component) was small (<25% of peak Ito). Faster inactivation or larger pedestals tended to suppress EADs. CONCLUSIONS Repolarization reserve evolves dynamically during the cardiac action potential. Whereas sufficiently large Ito can suppress EADs, a wide range of intermediate Ito properties can promote EADs by influencing the temporal evolution of other currents affecting late repolarization reserve. These findings raise caution in targeting Ito as an antiarrhythmic strategy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Early afterdepolarizations in cardiac myocytes: beyond reduced repolarization reserve.

Early afterdepolarizations (EADs) are secondary voltage depolarizations during the repolarizing phase of the action potential, which can cause lethal cardiac arrhythmias. The occurrence of EADs requires a reduction in outward current and/or an increase in inward current, a condition called reduced repolarization reserve. However, this generalized condition is not sufficient for EAD genesis and ...

متن کامل

Rational strategy to stop arrhythmias: Early afterdepolarizations and L-type Ca2+ current

Unlike the brief action potentials (APs) in skeletal myo­ cytes or neurons, the human cardiac AP takes 100s of milliseconds to repolarize the cell. This slow repolar­ ization is essential for proper excitation–contraction coupling in cardiac muscle, and precise control of AP duration contributes to electrical stability. Under vari­ ous pathological conditions, often when the AP dura­ tion is pr...

متن کامل

Effects of early afterdepolarizations on reentry in cardiac tissue: a simulation study.

Early afterdepolarizations (EADs) are classically generated at slow heart rates when repolarization reserve is reduced by genetic diseases or drugs. However, EADs may also occur at rapid heart rates if repolarization reserve is sufficiently reduced. In this setting, spontaneous diastolic sarcoplasmic reticulum (SR) Ca release can facilitate cellular EAD formation by augmenting inward currents d...

متن کامل

Time-dependent Outward Currents through the Inward Rectifier Potassium Channel IRK1

Outward currents through the inward rectifier K+ channel contribute to repolarization of the cardiac action potential. The properties of the IRK1 channel expressed in murine fibroblast (L) cells closely resemble those of the native cardiac inward rectifier. In this study, we added Mg2+ (0.44-1.1 mM) or putrescine (approximately 0.4 mM) to the intracellular milieu where endogenous polyamines rem...

متن کامل

Modeling Circadian Rhythmicity of Cardiac Arrhythmias

The cardiomyocyte circadian (~24-hour) clock influences multiple intracellular processes, including transcription and contractile function, and has recently been linked to ventricular arrhythmias in mice [1]. Circadian rhythms have also been observed in transient outward potassium current (Ito), a current that dominates mice action potential (AP) repolarization. We used mathematical modeling to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation. Arrhythmia and electrophysiology

دوره 8 3  شماره 

صفحات  -

تاریخ انتشار 2015